Smallest Eigenvalues of Hankel Matrices for Exponential Weights

نویسنده

  • Y. Chen
چکیده

We obtain the rate of decay of the smallest eigenvalue of the Hankel matrices R I t j+kW 2 (t) dt n j;k=0 for a general class of even exponential weights W 2 = exp ( 2Q) on an interval I. More precise asymptotics for more special weights have been obtained by many authors. Remark 1 Running Title: Smallest Eigenvalues of Hankel Matrices

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The smallest eigenvalue of Hankel matrices

Let HN = (sn+m), n,m ≤ N denote the Hankel matrix of moments of a positive measure with moments of any order. We study the large N behaviour of the smallest eigenvalue λN of HN . It is proved that λN has exponential decay to zero for any measure with compact support. For general determinate moment problems the decay to 0 of λN can be arbitrarily slow or arbitrarily fast. In the indeterminate ca...

متن کامل

. C A ] 1 6 Ju l 1 99 9 Small eigenvalues of large Hankel matrices : The indeterminate case ∗

R xdα(x). (1.1) With α we associate the infinite Hankel matrix H∞ = {Hjk}, Hjk = sj+k. (1.2) LetHN be the (N+1)×(N+1) matrix whose entries areHjk, 0 ≤ j, k ≤ N . SinceHN is positive definite, then all its eigenvalues are positive. The large N asymptotics of the smallest eigenvalue, denoted as λN , of the Hankel matrix HN has been studied in papers by Szegö [11], Widom and Wilf [13], Chen and La...

متن کامل

Small eigenvalues of large Hankel matrices

In this paper we investigate the smallest eigenvalue, denoted as λN , of a (N+1)×(N+1) Hankel or moments matrix, associated with the weight, w(x) = exp(−xβ), x > 0, β > 0, in the large N limit. Using a previous result, the asymptotics for the polynomials, Pn(z), z / ∈ [0,∞), orthonormal with respect to w, which are required in the determination of λN are found. Adopting an argument of Szegö the...

متن کامل

Small eigenvalues of large Hankel matrices: The indeterminate case

In this paper we characterize the indeterminate case by the eigenvalues of the Hankel matrices being bounded below by a strictly positive constant. An explicit lower bound is given in terms of the orthonormal polynomials and we nd expressions for this lower bound in a number of indeterminate moment problems.

متن کامل

Hankel Matrices for the Period-Doubling Sequence

We give an explicit evaluation, in terms of products of Jacobsthal numbers, of the Hankel determinants of order a power of two for the period-doubling sequence. We also explicitly give the eigenvalues and eigenvectors of the corresponding Hankel matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003